首页> 外文OA文献 >Non-animal origin of animal thioredoxin reductases: Implications for selenocysteine evolution and evolution of protein function through carboxy-terminal extensions
【2h】

Non-animal origin of animal thioredoxin reductases: Implications for selenocysteine evolution and evolution of protein function through carboxy-terminal extensions

机译:动物硫氧还蛋白还原酶的非动物起源:对硒代半胱氨酸进化的影响以及通过羧基末端延伸的蛋白质功能的进化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thioredoxin reductase (TR) and thioredoxin constitute a major cellular redox system present in all organisms. In contrast to a single form of thioredoxin, there are two TR types: One (bacterial type or small TR) is present in bacteria, archaea, plants, and most unicellular eukaryotes, whereas the second (animal or large TR) is only found in animals and typically contains a carboxy-terminal penultimate selenocysteine encoded by TGA. Surprisingly, we detected sequences of large TRs in various unicellular eukaryotes. Moreover, green algae Chlamydomonas reinhardtii had both small and large TRs, with the latter being a selenoprotein, but no examples of horizontal gene transfer from animals to the green algae could be detected. In addition, phylogenetic analyses revealed that large TRs formed a subgroup of lower eukaryotic glutathione reductases (GRs). The data suggest that the large TR evolved in a lower eukaryote capable of selenocysteine insertion rather than in an animal. The enzyme appeared to evolve by a carboxy-terminal extension of GR such that the resulting carboxy-terminal glutathionelike peptide became an intramolecular substrate for GR and a reductant for thioredoxin. Subsequently, small TRs were lost in an organism that gave rise to animals, large TRs were lost in plants and fungi, and selenocysteine/cysteine replacements took place in some large TRs. Our data implicate carboxy-terminal extension of proteins as a general mechanism of evolution of new protein function.
机译:硫氧还蛋白还原酶(TR)和硫氧还蛋白构成了所有生物中存在的主要细胞氧化还原系统。与单一形式的硫氧还蛋白相比,有两种TR类型:一种(细菌类型或小的TR)存在于细菌,古细菌,植物和大多数单细胞真核生物中,而第二种(动物或大型TR)仅存在于动物,通常包含由TGA编码的羧基末端倒数第二个半胱氨酸。出人意料的是,我们在各种单细胞真核生物中检测到大TR的序列。此外,绿藻莱茵衣藻具有较小和较大的TR,后者是硒蛋白,但没有发现水平基因从动物向绿藻转移的例子。此外,系统发育分析表明,大的TRs组成了一个较低的真核谷胱甘肽还原酶(GRs)亚组。数据表明,大的TR是在能够插入硒代半胱氨酸的低等真核生物而不是动物中进化的。该酶似乎通过GR的羧基末端延伸而进化,使得所得的羧基末端的谷胱甘肽样肽成为GR的分子内底物和硫氧还蛋白的还原剂。随后,在产生动物的生物中损失了较小的TR,在植物和真菌中损失了较大的TR,在一些较大的TR中发生了硒代半胱氨酸/半胱氨酸替代。我们的数据暗示蛋白质的羧基末端延伸是新蛋白质功能进化的一般机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号